A Local-First Collaborative Modeling
Approach with Replicated Data Types

Léo Olivier

Kirollos Morcos

Marcos Didonet Del Fabro
Sébastien Gérard

COPAMO Workshop - MODELS ‘25 05/10/25

The Team

Léo Olivier Kirollos Morcos Marcos Didonet Del
Fabro

2"d year PhD student Master’s intern
CEAresearch
engineer, PhD

co-advisor

Sébastien Gérard

CEA research
director, PhD
director

Background &
Motivation

Challenges of Collaborative Modeling

. Popular
e Lack of support for collaboration 12 modeling tools
i Toti (2) : Collaboration
features in existing tools'“/, despite onty 12 cooport
growing modeling practitioners Automatic
Only 3 12 conflict resolution
heeds.
Feature Feature group L)
® Shlft In User behGVIOr. Model browsing/search Model manipulation and query 100
Multi-view modeling Models and languages 98
. . Collaboration at model level Models and languages 98
O More nOmCIdS, use mU|t|p|e deV|CeS." Visual edi.tors. Editors and' mode':ling environments 95
Model validation Model manipulation and query 95
Histor Versionin 95
e Is the separation between ST Colaborsion aysani :
Role-based access control Stakeholder management 93
Screen sharing Synchronous communication 93

asynchronous and synchronous

The most needed techniques for

collaboration still relevant? collaborative modeling®.

(1) Collaborative Model-Driven Software Engineering—A systematic survey of practices and needs in industry, David et al. (2023)

2 Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types, David, Syriani (2022)

g COPAMO Workshop - MODELS ‘25 05/10/25

https://www.sciencedirect.com/science/article/abs/pii/S0164121223000213
https://arxiv.org/abs/2205.11303

The Case for Hybrid Collaboration Workflows

e A company that develops wind turbines

operates divisions in Europe and America.

M

EUROPE

e Teams use models to coordinate. (:E}

AMERICA

e Redal-time collaboration within a division.

e Asynchronous collaboration between

divisions due to time zones.

E COPAMO Workshop - MODELS ‘25 05/10/25 5

Traditional Collaboration Architectures

Pros

Cons

Central server

Simple architecture: only need an API
to query & update the model.

Server lineadrizes all updates: no
conflicts management needed.
No support for asynchronous
collaboration.

High latency degrades user
experience (rollbacks).

Not fault-tolerant (server is a single
point of failure).

Data breach could expose
intellectual property.

@ COPAMO Workshop - MODELS 25

Git-like solution

Supports asynchronous collaboration.

Each member keeps a local copy of the
shared model.

Changes can be merged later.

No support for real-time collaboration.

Conflicts must be resolved manually,
usually at the syntax level (not
semantic).

Merge process can be slow and
error-prone (Higher cognitive load for
users).

05/10/25

Proposal

W -
Local-First Collaborative Modeling W E%

o Local-First) collaborative modeling: Local-First principles
o Models are stored locally on user device Availability

m Always available. Multi-device
o Automatic model merging offline capabilities

m Seamless collaboration. i i
Multiple collaboration

o Preservation of contributions

m No work is lost in case of conflicts during a

merge.
o Support for hybrid collaboration workflow Privacy
m Users can work online or offline.

(1) Local-First Software: You Own Your Data, in spite of the Cloud, Kleppmann et al. (2019)

@ COPAMO Workshop - MODELS ‘25 05/10/25 8

https://martin.kleppmann.com/papers/local-first.pdf

N
Conflict-free Replicated Data Type (CRDT)

conflict((¢,0), (t',0")) =t || t' A =commute(o, o)

Two concurrent operations that do not commute
are in conflict.

add("foo") add("bar")
Replica A ° PY o . {"f00",
{"fOO"} {"fOO”, "bar"} Sync\\\
*
Sync -
add("foo") remove ("foo") it .
Replica B ® PY & AN {"f00",
{"fOO"} {}

"bar"}

"bar"}

Time diagram of a set CRDT execution. The “Add-Wins” policy states
that in case of conflict between a concurrent add and remove on
the same element, the remove has no effect and the element

remains in the set.

(1) conflict-free Replicated Data Types, Shapiro et al. (2011)

@ COPAMO Workshop - MODELS ‘25

Replicated objects for asynchronous
distributed systems.
Encapsulate a conflict resolution
policy.

o Not really “conflict-free”...

Automatic merge of concurrent
updates.

Replicas automatically converge
towards a common state without

coordination.

05/10/25

L~

https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf

Achieving Local-First Collaborative Modeling %%

e Requirement for a CRDT model adapted to the
needs of Local-First collaborative modeling:

o Easy to specify and implement new CRDTs

tailored to modeling needs.
m Impossible in existing libraries.
o Allow the specification of semantic conflict

resolution policies suitable for
asynchronous collaboration.

m NoO “Last-Writers-Wins"!

o Support composition and nesting pf CRDTs J
for complex models.

@ COPAMO Workshop - MODELS ‘25 05/10/25 10

An Extensible Model for Domain-specific CRDTS%%

e Operations are stored in a generic

partially-ordered log (PO-Log).
o The log is the CRDT state.

Pure operation-based

modeil
e Operations are delivered to replicas in Genericity
causal order using a RCB component. Extensibility

e A data type-specific eval (query,state)

function interprets the PO-Log to

produce the actual CRDT value.

(1) Pure Operation-Based Replicated Data Types, Baquero et al. (2017)

@ COPAMO Workshop - MODELS ‘25 05/10/25 n

https://arxiv.org/pdf/1710.04469

An Extensible Model for Domain-specific CRDTs

e Prune redundant operqtions: R and Algorithm 1: Distributed algorithm for a replica ¢
se

L showing the interaction between the RCB middle-
Rby relations. ware and the Pure CRDT model
o R__, . dlready redundant upon delivery; state: s; « 0 ; // PO-Log
f

o R, :old opis made redundant by the (o I R R S o

by upon event operation(o):

delivery of a new op. if 0 is a query then
B . | eval;(o,s;);
e New CRDT = specifying: olse
o Set of operations; 3 | broadcast;(o);
o eval (q’ 3) function ; // Triggered by the RCB
. upon event deliver(t, 0):
o Redundancy relations. // Effect of the operation
si < {(t,0) | (t,0) Rsery si} Usi \ {(t',0') |
V(t',0') € s;: (t',0") Rey (t,0)};

g COPAMO Workshop - MODELS ‘25 05/10/25 12

An Extensible Model for Domain-specific CRDTs

update(rmv('a’))

Replica A
1. Alice updates the
—>»Received-» Reliable Causal Broadcast .
replica
Alice State (PO-Log)
\\
Causal relationship
“child-of"”

E COPAMO Workshop - MODELS ‘25 05/10/25

An Extensible Model for Domain-specific CRDTs

update(rmv('a’))

Replica A
——>»Received» Reliable Causal Broadcast +----- Broadcast - ->»
|
Deliver
Alloe s 2. Operationis

delivered locally
and broadcasted to
other participants

@ COPAMO Workshop - MODELS ‘25 05/10/25

An Extensible Model for Domain-specific CRDTs

update(rmv('a’))

Replica A
——>»Received-» Reliable Causal Broadcast [----- Broadcast - -»
Delliver
Alles s 3. Effect phase:the
operation is appended
to the log

Effect

@ COPAMO Workshop - MODELS ‘25 05/10/25

An Extensible Model for Domain-specific CRDTs

update(rmv('a’))

Replica A
—>»Received—» Reliable Causal Broadcast |----- Broadcast - -»
Delliver
Alics ErE) 3. Effect phase: redundancy

relationships prune past
operations from the log

@ COPAMO Workshop - MODELS ‘25 05/10/25

An Extensible Model for Domain-specific CRDTs

update(rmv('a’))

Replica A

o

Alice

—Received->»

Reliable Causal Broadcast

Deliver

State (PO-Log)

E COPAMO Workshop - MODELS ‘25

Replica B

‘Received >

Reliable Causal Broadcast

I
Deliver

State (PO-Log)

4. Operationis
received by Bob

05/10/25

Bob

An Extensible Model for Domain-specific CRDTs

update(rmv('a’))

e

Alice

Replica A

—Received-» Reliable Causal Broadcast

[

Deliver

State (PO-Log)

E COPAMO Workshop - MODELS ‘25

query(read, state)

5. Bob query the state

Replica B
‘Received » Reliable Causal Broadcast
|
Deliver o
State (PO-Log) Bob
h é {b] c H] d £} e}
05/10/25 18

Replicated Data Types
for Collaborative

NN NNNNRNN
Directed Multigraph Definition %%

e Many models are based on directed °’
multigraph structures.

e No CRDT specification with semantic

conflict resolution exists for this data

e GraphG = (v, A, E)

o \:verticesid;

o Ararcsid;
o E € V x V x A:directed edges. °

o Dangling edges not allowed.

Example of a directed multidigraph.

@ COPAMO Workshop - MODELS ‘25 05/10/25 20

An Add-Wins Directed Multigraph CRDT

U = {addVertex(v), removeVertex(v) | v € V'}

U {addArc(v,v’, a), removeArc(v,v’,a) | v,v' € V,a € A}

Q = {read}

Update operations (U) and query operations (Q).

Concurrent operations

Conflict resolution

addVertex(v)

removeVertex(v)

Keep the vertex

addArc(v,v’,a)

removeArc(v,v’,a)

Keep the arc

addArc(v,v’,a)

removeVertex(v)

Arc insertion is recorded
but stays invisible until the

vertex is reinserted.

E COPAMO Workshop - MODELS ‘25

Conflicts that may arise.

05/10/25

21

NN NNNNRNN
An Add-Wins Directed Multigraph CRDT %%

Specification for the redundancy relations (left) and evaluation function (right).

Algorithm 2: Evaluation of the local state s; to

(t,0) Rserf s = (op(0) = (removeVertex V removeArc)) reconstruct the multidigraph G
(t',0") Ryy (t,0) =1t <t Function eval(read, s;):
A (o' = addArc(v,v3,a’) A o = removeVertex(v) V0, A0 E« 0
, , foreach (t,0) € s; do
Avy=vVuy =) if o = addVertex(v) then
V (o' = addVertex(v') A (0 = addVertex(v) L V <V U{v};
V 0 = removeVertex(v)) A v/ = v) else if o = addArc(vy,vz,a) Avy,v3 €V
then
V (o' = addArc(vi,v3,a’) A (o = addArc(vy, v2, a) A+ AU{a};
Y
V o = removeArc(v1,v2,a)) L E «+— EU{(v1,v2,a)};
Avi =v1 Avy=v2 Ad' = a) r;turnGz(V,A,E)

@ COPAMO Workshop - MODELS ‘25 05/10/25 22

Supporting Nested CRDTs in the Vertices and Edges

e Extend the AW Multidigraph to support

nested CRDTs in its vertices and edges.

e Flat PO-Log — hierarchy of nested
logs".

o Ledf nodes: classical PO-Log;

o Internal nodes: map identifiers to child

logs ;
o Defines a path in the nested hierarchy.

e Introduces a new parent—child relation

to express hierarchical reset: R, :
yParent

(1) Nested Pure Operation-Based CRDTs, Bauwens et al. (2023)

@ COPAMO Workshop - MODELS ‘25

Log, =T — O
Vn >0:Llog,, = K < Log,
Log := U Log,,
n>0

Recursive definition of nested logs.

05/10/25

L~

https://drops.dagstuhl.de/storage/00lipics/lipics-vol263-ecoop2023/LIPIcs.ECOOP.2023.2/LIPIcs.ECOOP.2023.2.pdf

An Update-Wins Directed Multigraph CRDT

e G = (V,AE.,x,.2)

N U = {updateVertex(v, £,), removeVertex(v) | v € V, £, € Log}
o

U {updateArc(v,v’, a, £), removeArc(v, v, a) |

v,v' € V,a € A, L. € Log}

yr» Mg Assign vertex/arc identifiers to
its corresponding label ;

o Label — child CRDT.

Update operations (U) and query operations (Q).
(k,child) Royparent (t,0) =
(o = removeVertex(v) A (k =v MV -V I_()g7
Vk=(v,vs,a)A(v=1v Vo=
(01,02, 6) A (v =01 Vo = 12))) Mg : (V xV x A) < Log,
V (o = removeArc(vy,v2,a) A k = (v, v5,a)
A(vy =v]Avy=v5Aa=ad)) MU|t|d|graph = (MV7ME)

Nested multidigraph CRDT specification for relation R Internal state for the nested multidigraph.

byParent

g COPAMO Workshop - MODELS ‘25 05/10/25 24

e
/ /

An Update-Wins Directed Multigraph CRDT

Algorithm 3: Update-Wins Multidigraph CRDT
hierarchical reset policy

// During the effect phase

if (k, child) Ryyparent (t,0) then

// The reset does not apply to child operations
concurrent with ¢

conc < false;

reset(child, t, conc);

Function reset(log, t, conc):
if log € (T — O) then
log < log \ {(t',0) | V(t',0") € log : (t' <
t) V conc};
else if log € (K < Log) then
// The reset function is called recursively in
all children
foreach child € log do
| reset(child, t, conc);

Algorithm 4: Recursive evaluation of the nested
multidigraph G

Function eval(read, (My, Mg) € Multidigraph,):
Vi 0,A+ 0 FE + 0
Ay — @, AE — (Z);
foreach (v, child) € My do
V +« VUu{v}h
Ay« Ay U{(v, eval(read, child))}
foreach (vy,vs, a,child) € Mg do
if v1,v2 € V then
A+ AU{a};
E <+ EU {(’1)1,’1)2, CL)};
Ag < Agp U {(’Ul, V2, a, eval(read, Ch’l,ld))}

return G = (V, A, E, \y, Ag)

@ COPAMO Workshop - MODELS 25

05/10/25 25

NN NNNNRNN
A UML Class Diagram CRDT W E%

e Local-First UML Class Diagram with CRDTSs.
e Compose multiple CRDTs within the Ul

Multidigraph.

o User-friendly conflict resolution policy. ¢ T W
EWFlag Boolean “Enable-Wins”

O Vertices hOId C]-QSS CRDTS Class, Relation, Feature, Record None (no conflict)
Operation, Multiplicity

O EdgeS hold Relations CRDTSs. MVRegister(T) Set(T) Keep all concurrent values

. UWMap(K, Log) Map(K, LogValue) “Update-Wins”
o Both represented as record-like CRDTS. [wmaridigraph(v.A) Graph(v.A) “Update-Wins”
e Support essential features of a UML Class ~ [ofeester(D ! User-defined fota order

. Summary of the CRDTs used in the Class Diagram CRDT.
Diagram.

o (Abstract) classes, operations, features,

relations, multiplicities, etc.

@ COPAMO Workshop - MODELS ‘25 05/10/25 26

A Class Diagram CRDT

UW-Multidigraph

Diagram

A hierarchical view of the UML Class Diagram CRDT.

%rtices ws

Record

Class

is_abstract /features ‘aperations name

Record

Relation

%nds\abw

EWFlag

UWMap

UWMap List<char> Record

List<char>

TORegister

Boolean

Map

Map String Ends

String

RelationType

/value

&alue

/SOU TN et

Record Record TORegister TORegister
Feature Operation Multiplicity Multiplicity
%e }visibility is_abstract Farameters visibility return_type
MVRegister TORegister EWFlag UWMap TORegister MVRegister
Primitive Type Visibility Boolean Map Visibility Primitive Type
alue
Multidigraph
Record
MVRegister Fl ag
PrlmltheType Register
Map
List

@ COPAMO Workshop - MODELS ‘25

«enumeration»
RelationType

«enumeration»
Multiplicity

«enumeration» «enumeration»

Visibility PrimitiveType
Public String
Protected Number
Package Boolean
Private Void

Associates
Aggregates
Composes
Implements
Extends

Exactly(Number)

One

ZeroOrOne
OneToMany(Number)
ZeroToMany(Number)
ManyToMany(Number, Number)
OneOrMany

ZeroOrMany

Unspecified

Enumerations used in the Class Diagram CRDT.

05/10/25 27

Evaluation

Moirai Framework

e Pure operation-based CRDT
implementation in Rust.

e Designed for extensibility and
composability.

e Why Rust:

o Deterministic performance ;

o Memory safety ;

o Cross-platform support (e.g.,
WebAssembly).

E COPAMO Workshop - MODELS ‘25

B~ Moirai Public 5P Edit Pins ~ ® Watch 2 ~ % Fork 1 - Starred 5
¥ master ~ © + ¥ 6Branches © 6 Tags Q Gotofile t Add file ~ Moirai: An Extensible, Generic e

& leo-olivier Comments

I figures

I logs/wind_turbine_class_diagram
M src

I tests

[.gitignore

D BENCHMARKING.md

[cargo.lock

[cargo.toml

[LICENCE

[NOTES.md

[README.md

[0 README 5[5 Apache-2.0 license

44c833e - 2 months ago

Diagram

Delete outdated log files and add new wind turbine class ...

Comments

Comments

Cleaning

Organization

Organization

Comments

licence

Organization

Diagram

O 167 Commits

2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago

2 months ago

7 =

Moirai: An Extensible, Generic Operation-based CRDT
Framework with Customizable Conflict Resolution

Moirai repository: https:

Operation-based CRDT Framework with

Customizable Conflict Resolution
distributed-systems modeling crdt
eventual-consistency

operation-based-crdt

07 Readme

&8 Apache-2.0 license
A~ Activity

[E Custom properties
¥ 5 stars

® 2 watching

% 1fork

£ 2 years old

© 6 tags

Contributors 2

& ekkaiaaa ekkaia
= = leo-olivier Léo
&

Languages

@ Rust 100.0%

ithub.com/CEA-LIST/Moirai

05/10/25 29

https://github.com/CEA-LIST/Moirai

Expressiveness

e Does the approach allow for defining

rich and complex models?

e Design of a wind turbine model within
the Moirai framework using the Class
Diagram CRDT.

e Small number of elements, but
showcases a rich set of class diagram

features.

@ COPAMO Workshop - MODELS ‘25

@ EnergyGenerator

©Ma nufacturer

o getEnergyOutput(): Number

o name: String

1. 1.*
feedsinto owns repairs
0..% 0.*

© EnergyGrid

0..*

o gridName: String

o capacityMW: Number

D connectedTo

© WindTurbine

e start(): void
e shutdown(): void

1 1
/él-itor TmounteNicelle
1 1

© Rotor

© 1;0W er

© Nacelle

o diameter: Number
o maxRpm: Number

o heightM: Number
o material: String

o weightTons: Number
o intemalTempC: Number

1
comprises
3

(©)Blade

A UML class diagram of a wind turbine model, generated
with PlantUML.

05/10/25 30

Asynchronous collaboration (1/3)

e Isthe approach suitable for
asynchronous collaboration?
o High risk of conflicts!
e Class diagram CRDT conflict
resolution policy:
o No rollbacks.
o Every operation has a visible effect.
o Retains all conflicting values to

prevent data loss when necessary.

@ COPAMO Workshop - MODELS ‘25

@ EnergyGenerator

@Ma nufacturer

o getEnergyOutput(): Number

o name: String

© EnergyGrid

0..*

o gridName: String

o capacityMW: Number

D connectedTo

1. 1.*
feedsinto owns repairs
0..% 0.*

© WindTurbine

e start(): void
e shutdown(): void

1 1
/élitor TmounteNicelle
1 1

© Rotor

© 1;0W er

© Nacelle

o diameter: Number
o maxRpm: Number

o heightM: Number
o material: String

o weightTons: Number
o intemalTempC: Number

1
comprises
3

©Blade

A UML class diagram of a wind turbine model, generated
with PlantUML.

05/10/25 31

Asynchronous collaboration (2/3)

Alice’s operations

Bob’s operations

Graph.updateArc("manufacturer", "energy _grid", "rel",...)

Relation.type(TORegister.write("Aggregates"))

Relation.type(TORegister.write("Associates"))

Relation.label(MVRegister.write("employs"))

Relation.label(MVRegister.write("operates"))

On the rel

ation ends

Ends.source(TORegister.write(ZeroOrMany)))
Ends.target(TORegister.write(OneOrMany)))

Ends.source(TORegister.write(OneToMany(2))))
Ends.target(TORegister.write(One)))

© EnergyGrid

© EnergyGrid

o capacityMW: Number
o gridName: String

o capacityMW: Number
o gridName: String

1.¥
employs
0..*

©Manufacturer

o name: string

(a) Alice’s version.

1
operates
1::2

@Manufacturer

o name: string

(b) Bob’s version.

Concurrent update of relation label, multiplicity,

@ COPAMO Workshop - MODELS ‘25

and type.

© EnergyGrid

o capacityMW: Number
o gridName: String

1
employs/operates
1.2

@Manufacturer

o name: string

(c) Merge result.

05/10/25 32

Asynchronous collaboration (3/3) o %%

«<

© Rotor

o diameter: Number
o maxRpm: Number

Before Alice and Bob modifications.

Alice’s operations Bob’s operations

On maxRpm feature

Feature.visibility(TORegister.write("Public")) Feature.visibility (TORegister.write("Protected"))
. : @ RotorSystem
Feature.type(MVRegister.write("String")) Feature.type(MVRegister.write("Number")) RotorUnit @RotorUnitIRotorSystem
: : maxRpm: Number
On Rotor class o diameter: String - diameF;er' rofiiir syl maxRpm: Unknown
Class.name(MVRegister.write("RotorUnit")) Class.name(MVRegister.write("RotorSystem")) / . o diameter: Number/String

On diameter feature

Map.update("diameter", (a) Alice’s version. (b) Bob’s version. (c) Merge result.
Feature.visibility (TORegister.write(" Private")))

Map.remove(“maxRpm”)

Concurrent update of feature visibility, type, and
class label.

@ COPAMO Workshop - MODELS ‘25 05/10/25 33

object GraphOps {

e Formal Verification with VeriFx(: L T L A—

AddArc(from: V, to: V, id: E) | RemoveArc(from: V, to: V, id: E)

9 }
o SMT theorem prover checks for %
12 class PureAwMultidigraph[V, E](polog: Set[TaggedOp[GraphOps[V, EI]])

13 extends PureOpBasedCRDT[GraphOps[V, E], PureMultidigraph[V, E1] {

counterexamples to required properties; .

15 > def copy(newPolog: Set[TaggedOp[GraphOps[V, E]1]]) ==

.. . . 18 // Remove operations are self-redundant
@) Ensures the SpeCIfICthon |S Strongly ;: > t;ef selfRedundant(op: TaggedOp[GraphOps[V, E]11): Boolean = op.o match {-
24
H 25 // Check if “x° is redundant given “y°
eventuqlly ConSIStent. 26 > def redundantBy(x: TaggedOp[GraphOps[V, E]], y: TaggedOp[GraphOps[V, E]]): Boolean = {=-
51, }
52

) Fuzzer tOO|: 53 // Check if the PO-Log contains a vertex or edge

54 > def contains(v: V, e: E): Boolean ==
61 }

@) Gener(]tes executions With VG rYIng |eve|S 23 object PureMultidigraph extends PureCRDTProof2[GraphOps, PureMultidigraph]

VeriFx proof code.

of concurrency ;

Operations Model size Replicas Ops/sec (approx.)

4 50,000
100,000 150 elems 8 30,000

o Measure throughput of operations. 16 15,000

Throughput of operations on the Class Diagram CRDT
measured on different numbers of replicas.

o Checks that all replicas converge.

M VeriFx. Correct Replicated Data Types for the Masses, De Porre et al. (2023)

g COPAMO Workshop - MODELS ‘25 05/10/25

https://drops.dagstuhl.de/storage/00lipics/lipics-vol263-ecoop2023/LIPIcs.ECOOP.2023.9/LIPIcs.ECOOP.2023.9.pdf

Conclusion

Limitations

e Beyond data replication, collaborative

modeling needs:
o Undo/redo;
o History browsing ;
o Access control.
e Applicability to other metamodels
remains to be explored.
o Current limitation: no user interface,

only Graphviz export available.

E COPAMO Workshop - MODELS ‘25 05/10/25

Future work

e Automatic generation of collaborative
Local-First DSL

e Transactions

e Integration of Moirai as a replication

layer for an existing modeling tool

o e.g.,Syson (SysML v2).

@ COPAMO Workshop - MODELS ‘25 05/10/25

N\ “'
N "”
N

N\
N\

Thanks for your
attention

Léo OLIVIER

leo.olivier@cea.fr

<

38

Moirai: https://github.com/CEA-LIST/Moirdi

mailto:leo.olivier@cea.fr
https://github.com/CEA-LIST/Moirai

39

Mastering Complexity

e Contemporary challenges require

complex technological solutions.
o Adaptation to global warming ;
o Green industry;
o Sustainable energy production.

e Mastering complexity by harnessing

collective intelligence(.

o Large, international, and multidisciplinary
teams.

(1) collective Intelligence and Group Performance, Woolley et al. (2015)

@ COPAMO Workshop - MODELS ‘25

lllustration coming soon!

05/10/25

https://www.jstor.org/stable/44318880

Sharing Domain Knowledge with Models

e Model-Based System Engineering (MBSE).

e Useful for designing complex systems and

coordinating among team members in —
+ hide() - width : double
1 + remove()
engineering projects. ~R T
o Example: software engineers often use UML class Fars oL
:Cv?é?:,“ :d%?,l:,?;e + loadBearing() : boolean
diagrams to represent software architecture. oo oo ;
e Recent successful applications of MBSE: T@., — i
sBpen boicar [oubideGolr Cole

- material : String kel ok

o Simulation of Smart Grids® : s ksl e

+isOpen() : boolean

o Sustainable factories(?.
Example of a class diagram

associated with a UML model.

e What about collaborative modeling solutions?

(1) Model-based Systems Engineering for Sustainable Factory Design, Bataleblu et al. (2024)

(2) The Smart Grid Simulation Framework: Model-driven engineering applied to Cyber-Physical Systems, Oudart et al. (2020)

COPAMO Workshop - MODELS ‘25 05/10/25 41

https://www.sciencedirect.com/science/article/pii/S2212827124001458
https://wdi.centralesupelec.fr/boulanger/publis/2021SmartGridSimFramework.pdf#page=1.36

Local-First Workflow

0°0
[

|nstuntune°“5" N
—Request .
--Sync--» \, Network { --------------- >
<—Response

Remote user
Local

1
1
user Sync
Local WiFi,

v >

Bluetooth

Remote user

(@]
Interaction between the user and the Local-First
software showing the different data

synchronization options.

@ COPAMO Workshop - MODELS ‘25 05/10/25

