MetaCase

New UX for

Participatory Modeling
...a vision paper...

Steven Kelly CoPaMo, MODELS 2024
stevek@metacase.com Sun 22 Sept 2024 11:44

MetaEdit +

B Mature, commercial, supported Language Workbench
— 10s of years, 100s of DSLs, 1000s of commercial users

(industry and academic) Reported use of commercial DS(M)L tools, 2012-2020
® Collaborative modeling e ang ot oty Emprca Sofowar Engineening 2501 000
® Diagram Editor, Matrix Editor,
Table Editor, various Explorers MetaEdit+

B Metamodelling tools,

graphical Symbol Editor, |
Generator Editor + Debugger Tauﬁk;‘;’/’

B Most widely-used commercial Microsot DSt Tool:
tool in research and academia

MagicDraw:
6%

© 2024 MetaCase 2

Tooling for Participation
in Domain-Specific Modeling
Tooling for participation:
B Technical facets of collaborative modeling
- Multi-paradigm and multi-view aspects of collaboration

B Organizational+human facets of participatory modeling
- Methods for designing participatory modeling: tools

Domain-Specific Modeling for participation:

B Language of requirements: non-techie participants <3
B Formal, generates full system: techie participants <3

© 2024 MetaCase

Tools for Domain-Specific Modeling

B Language Workbench creates modeling tools efficiently

— 2000x faster than coding with graphics+model frameworks
B Many things can be done to accommodate participants

— Filtering, hiding details, tweaking visual representation
B But if you have to drop down to coding, that 2000x hurts!

B Textual: Xtext, Spoofax, Rascal not graphical: 7%
B Graphical: MetaEdit+, MS DSL Tools, Sirius, GEMS 68%
B Projectional: MPS, Intentional, Whole Platform 17%

© 2024 MetaCase

UX Areas in Modeling Tools

B Explorers for navigating to models and their elements
— Project explorer: workspace, solution, projects
— Models explorer: by type, containment hierarchy
— Model explorer: objects, sub-objects, sub-models
B Editors for creating, editing and viewing models
— Diagram
- Table
— Matrix
B Property views for editing model element details
— Property dialog (traditional UI widgets)
— Property sheet (simple grid with mostly textual display)
© 2024 MetaCase

% Containment %ﬂ Diagrams

Explorers —

A% R,

Containment
w Q
E}E] User A
-7 Relations

- domain. User
E-E] Address
E-E] Administrator
=8 =
. Bl-/7 Relations

© 2024 MetaCase

i (O status:int =0

- Standard widgets o e

Simple fixed queries + 7 oupontouse

@» Dupont Jacques
. ﬂ upent Michelle
Maybe filter, sort etc. & CupontHare.
F !"Germﬂn',r

Low hanging fruit? A serin

Graph Browser | EE Type Browser On Object Browser E8 Metamodel Browser

Projects Graphs Contents: Objects
Digital Watch 4 [WatchModels: WatchFamily A || : DisplayFn f‘\
Examples (£ Simple: WatchApplication E| Action
Port examples 4 [TAST: Watch&pplication Eﬂu:tiu:un
SA/S5D 5 AlarmClock: WatchApplication ||[4] Action
F ! Down: ButtonPress
{53 Time: WatchApplication 4 Mode: ButtonPress
=3 Timer: WatchApplication w || Running: State [Watch]
Help Filter: | ™~ Filter: | =~

Default
Port examples | Tree: | All subgraphs ™ Show: | Objects b 6

Build your own Explorer!

Build your own Explorer!

B Query starting point

— Current project / graph / object
B Accessor or navigation path

- => List, Tree, Table, Tree+Table
B Filter, sort
B Display format

— Icon, Name, Type

© 2024 MetaCase

Query Builder for participants’ needs

Subobject source Graph " L4 Alarm
L Self Object —!lcen
B i TAST
() Single Property Sub-BlackBox Port A RingState o
Role - > Roll TASTW

() Collection Property OutputPorts | M lget AlarmClock

it Stopwatch
® Subgraph of type T — v Templates P 4 Transition pw
= : General Entry

Object type iz abeimcOut [Eod) M Control 4 Event: (] But Exit1 Mode
O Generator | do decompositions | ~ External /0 Button nal Exit2 Mode
' ' Reset [Down
Run LUp
. . . s Up
B do >Transition { :Name; ' ', :Event; newline } Timem-” °
B do >Transition; where :Guard='"' {.} Timer
WorldTime
B do graphs { :GraphName, newline ST
do >Transition {' ' : Name newline }

© 2024 MetaCase 9

Liveness of New UX

Just get the results as text, a list, table, tree etc.
Keep result open, save/export it

Output is Live: inspect elements, dive into them
Save & repeat query, share

Automatic update of result as models change
— A user could also choose to stop this
Keep same elements +boilerplate, but names update
— Better to rerun whole query? Name affects order, filtering

B Meta: Actual UI doesn’t need to update after opening

- E.qg. if definition of new UX query changes
© 2024 MetaCase 10

Bidirectionality of New UX

B Would editing the results affect source models?
— Changing order? Removing? Adding?

B Similar to familiar questions:
— reverse engineering
— editing generated code

- auto-layout vs. remembering positions
e Computer doesn’t need positions (or names!); human does.

B The non-modeling participant is actually modeling then

© 2024 MetaCase

11

Conclusions of a meta-explorer

B Allow building explorers for participants’ needs

- Non-modeling participants often ask ‘show me all X’s here’
B Seems not to have been described or built before
B Closest are ad hoc browsers from 1990s CASE tools

— Excelerator ‘spider diagrams’: just one step, all accessors
— TDE Navigator: each step chosen each time, confusing

B Fast and simple enough for all participants
— Tool developer; metamodeler / modeler / participant
— Liveness seems worthwhile; bidirectionality hard, even bad

B Next step: built a prototype, test with users

© 2024 MetaCase 12

MetaCase

Thank you!
Questions? Experiences? Arguments?
Co-evolution Tutorial: Mon 16:00 T6

Co-evolution keynote: Tue 9:30 ME'24
Industry Day talk: Tue 12:07

	Slide 1
	Slide 2
	Slide 3: Tooling for Participation in Domain-Specific Modeling
	Slide 4: Tools for Domain-Specific Modeling
	Slide 5: UX Areas in Modeling Tools
	Slide 6: Explorers
	Slide 7: Build your own Explorer!
	Slide 8: Build your own Explorer!
	Slide 9: Query Builder for participants’ needs
	Slide 10: Liveness of New UX
	Slide 11: Bidirectionality of New UX
	Slide 12: Conclusions of a meta-explorer
	Slide 13

