
© 2024 MetaCase 1

Steven Kelly

stevek@metacase.com

CoPaMo, MODELS 2024

Sun 22 Sept 2024 11:44

New UX for
Participatory Modeling

…a vision paper…

© 2024 MetaCase 2

◼ Mature, commercial, supported Language Workbench

– 10s of years, 100s of DSLs, 1000s of commercial users
(industry and academic)

◼ Collaborative modeling

◼ Diagram Editor, Matrix Editor,
Table Editor, various Explorers

◼ Metamodelling tools,
graphical Symbol Editor,
Generator Editor + Debugger

◼ Most widely-used commercial
tool in research and academia

© 2024 MetaCase 3

Tooling for Participation
in Domain-Specific Modeling

Tooling for participation:

◼ Technical facets of collaborative modeling

– Multi-paradigm and multi-view aspects of collaboration

◼ Organizational+human facets of participatory modeling

– Methods for designing participatory modeling: tools

Domain-Specific Modeling for participation:

◼ Language of requirements: non-techie participants <3

◼ Formal, generates full system: techie participants <3

© 2024 MetaCase 4

Tools for Domain-Specific Modeling

◼ Language Workbench creates modeling tools efficiently

– 2000x faster than coding with graphics+model frameworks

◼ Many things can be done to accommodate participants

– Filtering, hiding details, tweaking visual representation

◼ But if you have to drop down to coding, that 2000x hurts!

◼ Textual: Xtext, Spoofax, Rascal not graphical: 7%

◼ Graphical: MetaEdit+, MS DSL Tools, Sirius, GEMS 68%

◼ Projectional: MPS, Intentional, Whole Platform 17%

© 2024 MetaCase 5

UX Areas in Modeling Tools

◼ Explorers for navigating to models and their elements

– Project explorer: workspace, solution, projects

– Models explorer: by type, containment hierarchy

– Model explorer: objects, sub-objects, sub-models

◼ Editors for creating, editing and viewing models

– Diagram

– Table

– Matrix

◼ Property views for editing model element details

– Property dialog (traditional UI widgets)

– Property sheet (simple grid with mostly textual display)

© 2024 MetaCase 6

Explorers

◼ Standard widgets

◼ Simple fixed queries

◼ Maybe filter, sort etc.

◼ Low hanging fruit?

© 2024 MetaCase 7

Build your own Explorer!

© 2024 MetaCase 8

Build your own Explorer!

◼ Query starting point

– Current project / graph / object

◼ Accessor or navigation path

– => List, Tree, Table, Tree+Table

◼ Filter, sort

◼ Display format

– Icon, Name, Type

© 2024 MetaCase 9

Query Builder for participants’ needs

◼ do >Transition { :Name; ' '; :Event; newline }

◼ do >Transition; where :Guard='' {…}

◼ do graphs { :GraphName; newline

 do >Transition {' '; :Name; … newline }

 }

© 2024 MetaCase 10

Liveness of New UX

◼ Just get the results as text, a list, table, tree etc.

◼ Keep result open, save/export it

◼ Output is Live: inspect elements, dive into them

◼ Save & repeat query, share

◼ Automatic update of result as models change

– A user could also choose to stop this

◼ Keep same elements +boilerplate, but names update

– Better to rerun whole query? Name affects order, filtering

◼ Meta: Actual UI doesn’t need to update after opening

– E.g. if definition of new UX query changes

© 2024 MetaCase 11

Bidirectionality of New UX

◼ Would editing the results affect source models?

– Changing order? Removing? Adding?

◼ Similar to familiar questions:

– reverse engineering

– editing generated code

– auto-layout vs. remembering positions

• Computer doesn’t need positions (or names!); human does.

◼ The non-modeling participant is actually modeling then

© 2024 MetaCase 12

Conclusions of a meta-explorer

◼ Allow building explorers for participants’ needs

– Non-modeling participants often ask ‘show me all X’s here’

◼ Seems not to have been described or built before

◼ Closest are ad hoc browsers from 1990s CASE tools

– Excelerator ‘spider diagrams’: just one step, all accessors

– TDE Navigator: each step chosen each time, confusing

◼ Fast and simple enough for all participants

– Tool developer; metamodeler / modeler / participant

– Liveness seems worthwhile; bidirectionality hard, even bad

◼ Next step: built a prototype, test with users

© 2024 MetaCase 13

Thank you!

Questions? Experiences? Arguments?

Co-evolution Tutorial: Mon 16:00 T6
Co-evolution keynote: Tue 9:30 ME’24
Industry Day talk: Tue 12:07

	Slide 1
	Slide 2
	Slide 3: Tooling for Participation in Domain-Specific Modeling
	Slide 4: Tools for Domain-Specific Modeling
	Slide 5: UX Areas in Modeling Tools
	Slide 6: Explorers
	Slide 7: Build your own Explorer!
	Slide 8: Build your own Explorer!
	Slide 9: Query Builder for participants’ needs
	Slide 10: Liveness of New UX
	Slide 11: Bidirectionality of New UX
	Slide 12: Conclusions of a meta-explorer
	Slide 13

