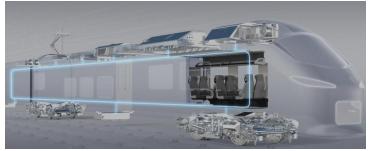


Towards Model-Based Adoption for Requirements Elicitation in Railway – the Role of Collaborative and Participatory Modelling

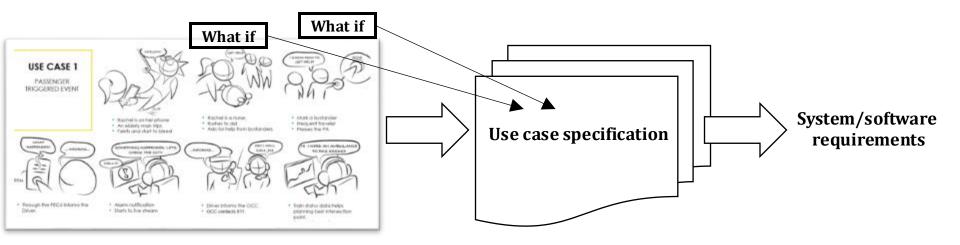
School of Innovation, Design and Engineering, Mälardalen University <u>Henrik Gustavsson</u>/Alstom, Mälardalen University Johan Cederbladh/Mälardalen University

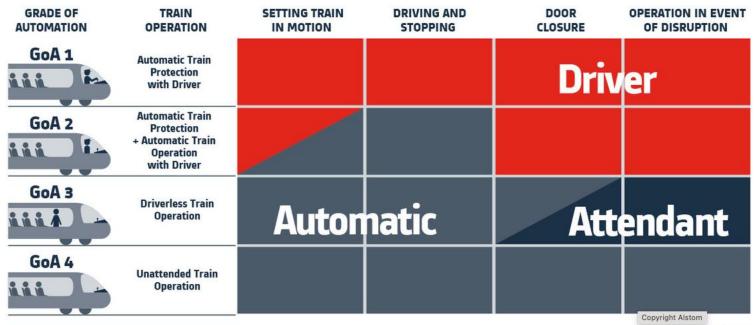
Some history...

Topic


- Discuss context of potential implementation and adoption of model-based practice for managing and facilitating stakeholder collaboration and communication in systems engineering in a complex environment.
- Motivational example requirements elicitation in railway vehicle engineering.
- Provide context for future research.

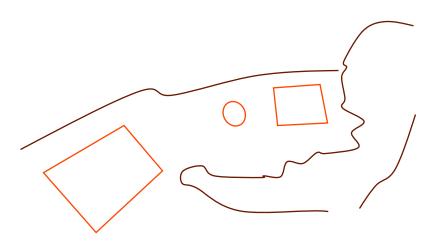
Domain

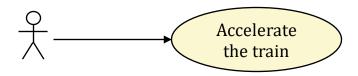

- Railway vehicles are Cyber Physical System-of-Systems (CPSoS). A railway vehicle is composed of a range of complex subsystems, many of them characterized by a high degree of electromechanics e.g. propulsion, brake, couplers, passenger doors.
- Railway vehicle use cases characterized by a wide range of different actors.
 - E.g. London Underground: +4000 trains, +3 million passengers/day, 3500 train operators, 14 maintenance depots
- Railway vehicle control achieved by combination of conventional relay logic and distributed embedded system – architecture featuring information, operational and safety control layers.
- Railway vehicles face high demands on operability, dependability, security, environmental conditions.
- Railway vehicles operate on unique legacy infrastructure tracks, platforms, electrification system, signalling system, maintenance depots.



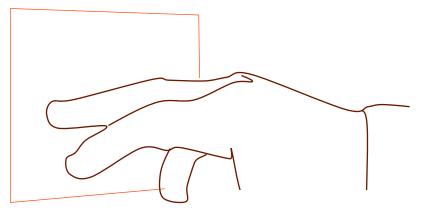
Base scenarios + what-if scenarios \rightarrow use case specifications \rightarrow derived requirements

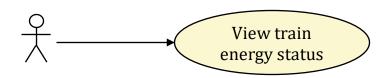
Use cases in operation, goals and actor classes • Grade of Automation 1-4



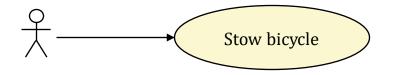


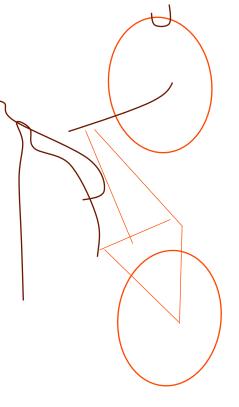
Scenario examples – Accelerate the train





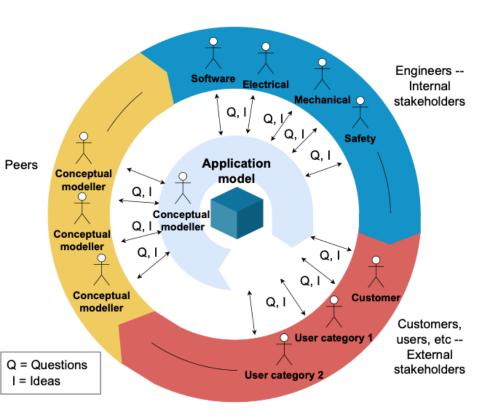
Scenario examples – View train energy status





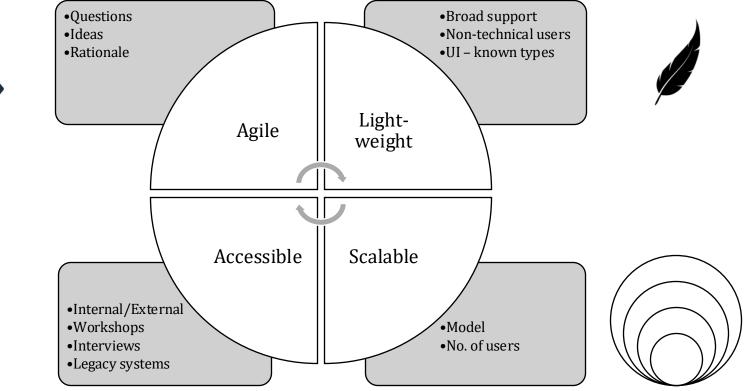
Scenario examples – Stow bicycle

Organization


- Categories of collaborating participants involved in modelling:
 - Internal stakeholders
 - External stakeholders
 - Peers
- Global distribution of collaborating participants.
- The decomposition of the model reflects the organization of the modelling core team.

Modelling process

- Iterative and incremental.
- Hybrid approach:
 - Plan-based
 - Agile elements
- Global distribution of the participants


 virtual/hybrid meetings are necessary in all process stages.
- Negotiation of stakeholder needs
- Capture and record questions (Q) and ideas (I) during the process.
- Final output: Model including **Rationale.**

Collaborative/participatory modelling approach – required characteristics

• Accessible, agile, light-weight, scalable.

Process	Work Breakdown Structure – WBS	User Interface		Reuse of Patterns
Plan-based Agile elements Questions, Ideas, Rationale	Model organization has impact	Meetings Virtual/ hybrid	Meetings Physical	Modelling with patterns in use case sequences
Agile elements, e.g. •Kanban •Scrum •Feature-driven development – FDD •Behavior-driven development – BDD •Lean development •Adaptive software development – ASD •Crystal methods •Extreme programming – XP •Dynamic systems development method – DSDM	Use Case Model organization •Lifecycle-oriented •Actor-oriented •Goal-oriented •Location-oriented •Event-oriented •State-oriented •Pattern-oriented	"Style" elements •MS 365 •Forms Tactile: •Pen (pad) •Touch (pad)	"Style" elements •MS 365 •Forms Tactile: •Pen (pad) •Touch (pad) •Whiteboard •Paper figures (e.g. SAP Scenes TM)	Patterns (examples)•Success pattern•Detour pattern•Termination•Activation/Feedbackpattern•Deactivation/Feedbackpattern•Redundancy patterns- Cold standby- Warm standby- Hot standby•Plausibility checkingpattern•Trigger[guard]/actionpattern

Discussion

- Powerful modelling language is attractive but must be balanced against the need to involve every participant.
- Due to the diversity of needs, it is valuable to seek to engage experts from other disciplines. E.g. cognitive behavior experts, organization experts

Mälardalen University

Conclusion

- We discussed the perspective of modelling in early requirements engineering stage in a complex environment.
- We illustrated needs and challenges with a motivational example railway vehicle systems engineering.
- We argue that the modelling environment should be accessible, agile, light-weight, and scalable.
- We have provided content for future research on collaborative and participatory modelling in complex, global context.

Future work

- Define and study solutions for efficient collaborative and participatory modelling in requirements elicitation.
- We welcome collaboration with CoPaMo community.

Thankyou!

<u>henrik.gustavsson@alstomgroup.com</u> <u>henrik.gustavsson@mdu.se</u>

Q & A